Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mar Drugs ; 21(9)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37755076

RESUMO

Skeletal constructs of diverse marine sponges remain to be a sustainable source of biocompatible porous biopolymer-based 3D scaffolds for tissue engineering and technology, especially structures isolated from cultivated demosponges, which belong to the Verongiida order, due to the renewability of their chitinous, fibre-containing architecture focused attention. These chitinous scaffolds have already shown excellent and promising results in biomimetics and tissue engineering with respect to their broad diversity of cells. However, the mechanical features of these constructs have been poorly studied before. For the first time, the elastic moduli characterising the chitinous samples have been determined. Moreover, nanoindentation of the selected bromotyrosine-containing as well as pigment-free chitinous scaffolds isolated from selected verongiids was used in the study for comparative purposes. It was shown that the removal of bromotyrosines from chitin scaffolds results in a reduced elastic modulus; however, their hardness was relatively unaffected.


Assuntos
Quitina , Poríferos , Animais , Biomimética , Porosidade , Engenharia Tecidual
2.
Mar Drugs ; 21(6)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37367659

RESUMO

Aminopolysaccharide chitin is one of the main structural biopolymers in sponges that is responsible for the mechanical stability of their unique 3D-structured microfibrous and porous skeletons. Chitin in representatives of exclusively marine Verongiida demosponges exists in the form of biocomposite-based scaffolds chemically bounded with biominerals, lipids, proteins, and bromotyrosines. Treatment with alkalis remains one of the classical approaches to isolate pure chitin from the sponge skeleton. For the first time, we carried out extraction of multilayered, tube-like chitin from skeletons of cultivated Aplysina aerophoba demosponge using 1% LiOH solution at 65 °C following sonication. Surprisingly, this approach leads not only to the isolation of chitinous scaffolds but also to their dissolution and the formation of amorphous-like matter. Simultaneously, isofistularin-containing extracts have been obtained. Due to the absence of any changes between the chitin standard derived from arthropods and the sponge-derived chitin treated with LiOH under the same experimental conditions, we suggest that bromotyrosines in A. aerophoba sponge represent the target for lithium ion activity with respect to the formation of LiBr. This compound, however, is a well-recognized solubilizing reagent of diverse biopolymers including cellulose and chitosan. We propose a possible dissolution mechanism of this very special kind of sponge chitin.


Assuntos
Quitosana , Poríferos , Animais , Quitina/química , Esqueleto/metabolismo , Bandagens , Poríferos/metabolismo
3.
Carbohydr Polym ; 301(Pt A): 120224, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36436845

RESUMO

Cationic chitosan is recognized as the most widely studied derivative of chitin, one of the main and the most evolutionary ancient structural biopolymer in nature. The multi-functionality of chitosan, due to its specific physicochemical properties, biodegradability and biocompatibility, is a fundamental factor in the patentability of this biopolymer in diverse fields of modern science and technology. It is shown that the chitosan-related patents were categorized mainly under biomedical, material science, biotechnology, and chemical directions; while a very small portion of the patents were mentioned under food, cosmetics, environmental protection, and agricultural fields. For the first time, the review provides a detailed analysis on the background and scope of the patents reported on chitosan so far.


Assuntos
Quitina , Quitosana , Materiais Biocompatíveis , Ciência dos Materiais , Biotecnologia
5.
RSC Adv ; 10(25): 14570-14580, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35497122

RESUMO

The aim of this study was better understanding of surface properties of bimetallic (silver-platinum) catalysts and to verify if a very small addition of platinum (ca. 0.05 wt%) to silver (ca. 2.0 wt%) loaded on ordered mesoporous silica, SBA-15, would improve the catalytic properties of bimetallic Ag-Pt materials in selective oxidation of methanol to methyl formate. Ag-Pt catalysts were prepared by one-step and step-by-step procedures and the final Ag/Pt molar ratio in the respective samples was equal to 86 and 63. The catalysts were characterized after calcination and different activation treatments (in Ar and O2). X-ray diffraction, UV-vis and XP spectroscopy confirmed the lack of Ag-Pt alloy crystallites in the samples and also evidenced a higher resistance of silver oxide species to reduction upon activation in Ar flow in the presence of platinum promoter interacting with silver species. Methanol oxidation over the samples activated in Ar flow and in oxidizing flow (O2 + Ar) helped identify the role of each component in the bimetallic Ag-Pt catalyst in terms of activity and selectivity in the oxidation of methanol to methyl formate. A highly active bimetallic Pt/Ag/SBA-15 catalyst, selective to methyl formate and stable in methanol oxidation was constructed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA